甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换
设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间
(时)的函数图象如图所示.
(1)求甲组加工零件的数量y与时间之间的函数关系式.
(2)当x=2.8时,甲、乙两组共加工零件 件;乙组加工零件总量的值为 .
(3)加工的零件数达到230件装一箱,零件装箱的时间忽略不计,若甲、乙两组加工出的零件合在一起装箱,当甲组工作多长时间恰好装满第2箱?
如图,在 中, ,点 , 分别为 , 的中点,连接 ,作 与 相切于点 ,在 边上取一点 ,使 ,连接 .
(1)判断直线 与 的位置关系,并说明理由;
(2)当 , 时,求 的半径.
服装厂批发某种服装,每件成本为65元,规定不低于10件可以批发,其批发价 (元 件)与批发数量 (件 为正整数)之间所满足的函数关系如图所示.
(1)求 与 之间所满足的函数关系式,并写出 的取值范围;
(2)设服装厂所获利润为 (元 ,若 为正整数),求批发该种服装多少件时,服装厂获得利润最大?最大利润是多少元?
如图为某景区五个景点 , , , , 的平面示意图, , 在 的正东方向, 在 的正北方向, , 在 的北偏西 方向上, 在 的西北方向上, , 相距 , 在 的中点处.
(1)求景点 , 之间的距离;
(2)求景点 , 之间的距离.(结果保留根号)
如图,在四边形 中, , , 平分 .
(1)求证:四边形 是菱形;
(2)过点 作 ,交 的延长线于点 ,若 , ,求四边形 的周长.
某校在宣传“民族团结”活动中,采用四种宣传形式: .器乐, .舞蹈, .朗诵, .唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.
请结合图中所给信息,解答下列问题:
(1)本次调查的学生共有 人;
(2)补全条形统计图;
(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?
(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.