一个袋中有若干个大小相同的黑球、白球和红球。已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是。(Ⅰ)若袋中共有10个球,(i)求白球的个数;(ii)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望。(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于。并指出袋中哪种颜色的球个数最少。
∈R,解关于的不等式≥().
已知等差数列前三项的和为,前三项的积为. (Ⅰ)求等差数列的通项公式; (Ⅱ)若,,成等比数列,求数列的前项和.
已知p:,q: (1)若a=,且为真,求实数x的取值范围. (2)若p是q的充分不必要条件,求实数a的取值范围.
在△ABC中,角A,B,C所对的边分别是a,b,c.已知(b-2a)cosC+c cosB=0. (1)求C; (2)若c=,b=3a,求△ABC的面积.
已知数列的前项和为,且=,数列中,, 点()在直线上. (1)求数列的通项和; (2)设,求数列的前n项和,并求满足的最大正整数.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号