(本小题满分12分)(注意:在试题卷上作答无效)
如图,在四棱锥中,底面
为平行四边形,侧面
底面
.已知
,
,
,
.
(Ⅰ)证明;
(Ⅱ)求直线与平面
所成角的大小.
某班t名学生在2011年某次数学测试中,成绩全部介于80分与130分之间,将测试结果按如下方式分成五组,第一组[80,90);第二组[90,100)…第五组[120,130],下表是按上述分组方法得到的频率分布表:
分组 |
频数 |
频率 |
[80,90) |
x |
0.04 |
[90,100) |
9 |
y |
[100,110) |
z |
0.38 |
[110,120) |
17 |
0.34 |
[120,130] |
3 |
0.06 |
(Ⅰ)求t及分布表中x,y,z的值;
(Ⅱ)设m,n是从第一组或第五组中任意抽取的两名学生的数学测试成绩,求事件 “|m—n|≤10”的概率.
已知,函数
。
(Ⅰ)求的最小正周期;
(Ⅱ)求函数的最大值及取得最大值的自变量
的集合.
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.记录如下:
甲:82 81 79 78 95 88 93 84乙:92 95 80 75 83 80 90 85
(1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数;
(2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由;
(3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为,求
的分布列及数学期望
.
如图,在四棱锥中,底面
为菱形,
,
为
的中点。
(I)点在线段
上,
,试确定
的值,使
平面
;
(II)在(I)的条件下,若平面平面ABCD,求二面角
的大小。
已知的三个内角A、B、C所对的三边分别是a、b、c,平面向量
,平面向量
(I)如果求a的值;
(II)若请判断
的形状.