在平面直角坐标系 x O y 上,给定抛物线 L : y = 1 4 x 2 .实数 p , q 满足 p 2 - 4 q ≥ 0 , x 1 , x 2 是方程 x 2 - p x + q = 0 的两根,记 φ ( p , q ) = m a x x 1 , x 2
(1)过点 A ( p 0 , 1 4 p 0 2 ) ( p 0 ≠ 0 ) 作 L 的切线教 y 轴于点 B .证明:对线段 A B 上任一点 Q ( p , q ) 有 φ ( p , q ) = p 0 2 ;
(2)设 M ( a , b ) 是定点,其中 a , b 满足 a 2 - 4 b > 0 , a ≠ 0 .过 M ( a , b ) 作 L 的两条切线 l 1 , l 2 ,切点分别为 E p 1 , 1 4 p 1 2 , E ` p 2 , 1 4 p 2 2 l 1 , l 2 与y轴分别交与 F , F ` .线段 E F 上异于两端点的点集记为 X .证明: M ( a , b ) ∈ X ⇔ P 1 > P 2 ⇔ φ ( a , b ) = p 1 2 ;
(3)设 D = ( x , y ) | y ≤ x - 1 , y ≥ 1 4 ( x + 1 ) 2 - 5 4 .当点 ( p , q ) 取遍 D 时,求 φ ( p , q ) 的最小值 (记为 φ m i n )和最大值(记为 φ m a x ).
已知等差数列{}的前三项为a,4,3a,前n项和为,⑴求a;⑵若=2550,求k的值.
在约束条件下,求z=2x-y的最大值和最小值.
若不等式3-(6-a)x-b<0的解集是 (-1,3),求a和b的值.
(满分17分) 已知,函数. (1)当时,求所有使成立的的值; (2)当时,求函数在闭区间上的最大值和最小值; (3) 试讨论函数的图像与直线的交点个数.
(满分15分) 设函数, (1)请画出函数的大致图像; (2)若不等式对于任意的恒成立,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号