已知 a , b 是实数,函数 f x = x 3 + a x , f ` x 和 g ` x 是 f x 的导函数,若 f ` x g ` x ≥ 0 在区间I上恒成立,则称 f x 和 g x 在区间I上单调性一致 (1)设 a > 0 ,若函数 f x 和 g x 在区间 [ - 1 , + ∞ ) 上单调性一致,求实数 b 的取值范围; (2)设 a < 0 且 a ≠ b ,若函数 f x 和 g x 在以 a , b 为端点的开区间上单调性一致,求 a - b 的最大值。
如图建立空间直角坐标系,已知正方体的棱长为2. (1)求正方体各顶点的坐标; (2)求A1C的长度.
已知A(x,2,3)、B(5,4,7),且|AB|=6,求x的值.
如图,在河的一侧有一塔CD=5m,河宽BC=3M,另一侧有点A,AB=4m,求点A与塔顶D的距离AD.
在yOz平面上求与三个已知点A(3,1,2),B(4,-2,-2),C(0,5,1)等距离的点的坐标.
试在坐标平面yOz内的直线2y-z=1上确定一点P,使P到点Q(-1,0,4)的距离最小.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号