如图,在三棱柱 A B C - A 1 B 1 C 1 中, H 是正方形 A A 1 B 1 B 的中心, A A 1 = 2 2 , C 1 H ⊥ 平面 A A 1 B 1 B ,且 C 1 H = 5 ,
(Ⅰ)求异面直线 A C 与 A 1 B 1 所成角的余弦值;
(Ⅱ)求二面角 A - A 1 C 1 - B 1 的正弦值;
(Ⅲ)设 N 为棱 B 1 C 1 的中点,点 M 在平面 A A 1 B 1 B 内,且 M N ⊥ 平面 A 1 B 1 C ,求线段 B M 的长.
已知圆,直线. (Ⅰ)若与相切,求的值; (Ⅱ)是否存在值,使得与相交于两点,且(其中为坐标原点),若存在,求出,若不存在,请说明理由.
已知直线和的相交于点P。 求:(Ⅰ)过点P且平行于直线的直线方程; (Ⅱ)过点P且垂直于直线的直线方程。
【(本小题满分12分) 已知函数,. (1)解关于的不等式(); (2)若函数的图象恒在函数图象的上方,求的取值范围.
(本小题满分12分) 已知函数 (1)若函数处有极值10,求b的值; (2)若对任意上单调递增,求b的取值范围。
(本小题满分12分) 已知函数,. (1)当时,求的单调区间与最值; (2)若在定义域R内单调递增,求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号