某重点高校数学教育专业的三位毕业生甲,乙,丙参加了一所中学的招聘面试,面试合格者可以正式签约,毕业生甲表示只要面试合格就签约,毕业生乙和丙则约定:两人面试合格就一同签约,否则两人都不签约,设每人面试合格的概率都是,且面试是否合格互不影响,求:(1)至少有1人面试合格的概率;(2)签约人数X的分布列及数学期望。
:已知,对
:
和
是方程
的两个根,不等式
对任意实数
恒成立;
:函数
有两个零点,求使“
且
”为真命题的实数的取值范围。
如图,以为始边作角
,它们的终边分别与单位圆相交于点P、Q,已知点P的坐标为
(1)求的值;
(2)若求
的值.
已知函数.
(I)当时,求函数
的定义域;
(II)若关于的不等式
的解集是
,求
的取值范围
(本小题满分14分)
设
(1)若在其定义域内为单调递增函数,求实数
的取值范围;
(2)设,且
,若在
上至少存在一点
,使得
成立,求实数
的取值范围.
(本小题满分13分)已知某几何体的直观图和三视图如下图所示, 其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.
(Ⅰ)证明:⊥平面
;
(Ⅱ)求平面与平面
所成角的余弦值;