已知函数 f ( x ) = ln x - a x 2 + ( 2 - a ) x . (I)讨论 f ( x ) 的单调性; (II)设 a > 0 ,证明:当 0 < x < 1 a 时, f ( 1 a + x ) > f ( 1 a - x ) ; (III)若函数的图像与x轴交于 A , B 两点,线段 A B 中点的横坐标为 x 0 , 证明: f ` ( x 0 ) < 0
已知a,b,c为实数,且a+b+c+2-2m=0,a2+b2+c2+m-1=0. (1)求证:a2+b2+c2≥. (2)求实数m的取值范围.
已知a,b,c,d均为正实数,且a+b+c+d=1,求证:+++≥.
设a,b,c均为正数,证明:++≥a+b+c.
已知实数a,b,c,d满足a+b+c+d=3,a2+2b2+3c2+6d2=5,试求a的最值.
已知a2+2b2+3c2=6,若存在实数a,b,c,使得不等式a+2b+3c>|x+1|成立,求实数x的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号