已知函数 f ( x ) = ln x - a x 2 + ( 2 - a ) x . (I)讨论 f ( x ) 的单调性; (II)设 a > 0 ,证明:当 0 < x < 1 a 时, f ( 1 a + x ) > f ( 1 a - x ) ; (III)若函数的图像与x轴交于 A , B 两点,线段 A B 中点的横坐标为 x 0 , 证明: f ` ( x 0 ) < 0
(1)求证:平面平面; (2)求正方形的边长; (3)求二面角的平面角的正切值.
已知点是⊙:上的任意一点,过作垂直轴于,动点满足。 (1)求动点的轨迹方程; (2)已知点,在动点的轨迹上是否存在两个不重合的两点、,使(O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。
直线经过两条直线:和的交点,且分这两条直线与轴围成的三角形面积为两部分,求直线的一般式方程。
已知函数有两个零点; (1)若函数的两个零点是和,求k的值; (2)若函数的两个零点是,求的取值范围.
设函数是定义在上的减函数,并且满足,, (1)求的值, (2)如果,求x的取值范围。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号