在平面直角坐标系 中,曲线 的参数方程为 ( 为参数)曲线 的参数方程为 ( , 为参数)在以 为极点, 轴的正半轴为极轴的极坐标系中,射线 : 与 , 各有一个交点.当 时,这两个交点间的距离为 ,当 时,这两个交点重合.
(1)分别说明
,
是什么曲线,并求出
与
的值;
(2)设当
时,
与
,
的交点分别为
,
,当
时,
与
,
的交点为
,
,求四边形
的面积.
(本小题满分12分)已知抛物线
:
和点
,若抛物线
上存在不同两点
、
满足
.
(I)求实数的取值范围;
(II)当时,抛物线
上是否存在异于
的点
,使得经过
三点的圆和抛物线
在点
处有相同的切线,若存在,求出点
的坐标,若不存在,请说明理由.
(本小题满分12分)如图,五面体中,
,底面ABC是正三角形,
=2.四边形
是矩形,二面角
为直二面角,D为
中点。
(I)证明:平面
;
(II)求二面角的余弦值.
(本小题满分12分)电信公司进行促销活动,促销方案为顾客消费1000元,便可获得奖券一张,每张奖券中奖的概率为,中奖后电信公司返还顾客现金1000元,小李购买一台价格2400元的手机,只能得2张奖券,于是小李补偿50元给同事购买一台价格600元的小灵通(可以得到三张奖券),小李抽奖后实际支出为X(元).
(I)求X的分布列;(II)试说明小李出资50元增加1张奖券是否划算。
(本小题满分12分)在中,角
的对边分别为
,且
成等差数列。
(Ⅰ)若,且
,求
的值;
(Ⅱ)求的取值范围。
设函数.
(1)画出函数y=f(x)的图像;
(2)若不等式,(a¹0,a、bÎR)恒成立,求实数x的范围.