游客
题文

在平面直角坐标系 x O y 中,曲线 C 1 的参数方程为 x = cos φ y = sin φ φ 为参数)曲线 C 2 的参数方程为 x = a c o s φ y = b s i n φ a > b > 0 φ 为参数)在以 0 为极点, x 轴的正半轴为极轴的极坐标系中,射线 l θ = α C 1 C 2 各有一个交点.当 α = 0 时,这两个交点间的距离为 2 ,当 α = π 2 时,这两个交点重合.

(1)分别说明 C 1 C 2 是什么曲线,并求出 a b 的值;
(2)设当 α = π 4 时, l C 1 C 2 的交点分别为 A 1 B 1 ,当 α = - π 4 时, l C 1 C 2 的交点为 A 2 B 2 ,求四边形 A 1 A 2 B 2 B 1 的面积.

科目 数学   题型 解答题   难度 中等
知识点: 参数方程
登录免费查看答案和解析
相关试题

(满分12分)已知函数.
(1)当时,求函数的单调区间;
(2)若函数在区间上为减函数,求实数的取值范围;
(3)当时,不等式恒成立,求实数的取值范围.

“蛟龙号”从海底中带回的某种生物,甲乙两个生物小组分别独立开展对该生物离开恒温箱的成活情况进行研究,每次试验一个生物,甲组能使生物成活的概率为,乙组能使生物成活的概率为,假定试验后生物成活,则称该试验成功,如果生物不成活,则称该次试验是失败的.
(1)甲小组做了三次试验,求至少两次试验成功的概率;
(2)如果乙小组成功了4次才停止试验,求乙小组第四次成功前共有三次失败,且恰有两次连续失败的概率;
(3)若甲乙两小组各进行2次试验,设试验成功的总次数为,求的期望.

近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸.呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:


患心肺疾病
不患心肺疾病
合计


5


10


合计


50

已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为,求的分布列,数学期望以及方差.下面的临界值表供参考:


0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828

(参考公式,其中

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:

测试指标
[70,76)
[76,82)
[82,88)
[88,94)
[94,100]
元件A
8
12
40
32
8
元件B
7
18
40
29
6

(1)试分别估计元件A、元件B为正品的概率;
(2)生产一件元件A,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在(1)的前提下:
(i)求生产5件元件B所获得的利润不少于300元的概率;
(ii)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.

(1)求的展开式中的常数项;
(2)已知,求的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号