游客
题文

在平面直角坐标系 x O y 中,曲线 C 1 的参数方程为 x = cos φ y = sin φ φ 为参数)曲线 C 2 的参数方程为 x = a cos φ y = b sin φ a > b > 0 φ 为参数)在以 O 为极点, x 轴的正半轴为极轴的极坐标系中,射线 l θ = α C 1 C 2 有一个交点.当 α = 0 时,这两个交点间的距离为 2 ,当 α = π 2 时,这两个交点重合。
(I)分别说明 C 1 C 2 是什么曲线,并求出 a b 的值;
(II)设当 α = π 4 时, l C 1 C 2 的交点分别为 A 1 , B 1 ,当 α = - π 4 时, l C 1 C 2 的交点为 A 2 B 2 ,求四边形 A 1 A 2 B 2 B 1 的面积。

科目 数学   题型 解答题   难度 中等
知识点: 参数方程
登录免费查看答案和解析
相关试题

(本小题满分12分)
已知函数的定义域为集合A,
(1)求集合
(2) 若,求的值;
(3)若全集,求

(本小题满分10分)
若函数的定义域和值域均为,求的值。

(本小题满分10分)
已知全集

(1) 用列举法表示集合
(2)求

(本小题满分12分)
设数列满足:

(Ⅰ)求的值;
(Ⅱ)设数列通项公式
(Ⅲ)求证:

(本小题满分12分)
已知椭圆的右准线是,倾斜角为交椭圆于A、B两点,AB的中点为
(I)求椭圆的方程;
(II)若P、Q是椭圆上满足若直线OP、OQ的斜率分别为,求证:是定值。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号