在平面直角坐标系
中,曲线
的参数方程为
(
为参数)曲线
的参数方程为
(
,
为参数)在以
为极点,
轴的正半轴为极轴的极坐标系中,射线
:
与
,
各有一个交点.当
时,这两个交点间的距离为
,当
时,这两个交点重合。
(I)分别说明
,
是什么曲线,并求出
与
的值;
(II)设当
时,
与
,
的交点分别为
,
,当
时,
与
,
的交点为
,
,求四边形
的面积。
已知函数.
(Ⅰ)若函数在[1,2]上是减函数,求实数
的取值范围;
(Ⅱ)令,是否存在实数
,当
(
是自然常数)时,函数
的最小值是3,若存在,求出
的值;若不存在,说明理由;
(Ⅲ)当时,证明:
设点是曲线
上的动点,点
到点(0,1)的距离和它到焦点
的距离之和的最小值为
.
(1)求曲线C的方程;
(2)若点的横坐标为1,过
作斜率为
的直线交
于点
,交
轴于点
,过点
且与
垂直的直线与
交于另一点
,问是否存在实数
,使得直线
与曲线
相切?若存在,求出
的值;若不存在,请说明理由.
已知等差数列的公差
大于0,且
、
是方程
的两根.数列
的前
项和为
,满足
(Ⅰ)求数列,
的通项公式;
(Ⅱ)设数列的前
项和为
,记
.若
为数列
中的最大项,求实数
的取值范围.
某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种产品受欢迎的概率分别为
,且不同种产品是否受欢迎相互独立.记
为公司向市场投放三种新型产品受欢迎的数量,其分布列为
![]() |
(Ⅰ)求该公司至少有一种产品受欢迎的概率;
(Ⅱ)求的值;
(Ⅲ)求数学期望.
如图,四棱锥的底面
是矩形,
,且侧面
是正三角形,平面
平面
,
(Ⅰ)求证:;
(Ⅱ)在棱上是否存在一点
,使得二面角
的大小为45°.若存在,试求
的值,若不存在,请说明理由.