某市旅游部门开发一种旅游纪念品,每件产品的成本是元,销售价是
元,月平均销售
件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为
,那么月平均销售量减少的百分率为
.记改进工艺后,旅游部门销售该纪念品的月平均利润是
(元).
(1)写出与
的函数关系式;
(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.
设函数y=f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),.
(1)求f(1)的值;
(2)如果f(x)+f(2﹣x)<2,求x的取值范围.
已知集合A={x|1≤x≤a},B={y|y=5x﹣6,x∈A},C={m|m=x2,x∈A}且B∩C=C,求a的取值范围.
已知函数f(x)=x2+2ax+2,x∈[﹣5,5],
(1)当a=1时,求f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[﹣5,5]上是单调函数.
已知M={1,2,a2﹣3a﹣1 },N={﹣1,a,3},M∩N={3},求实数a的值.
已知函数f(x)=2+x,其中1≤x≤9,求函数y=[f(x)]2+f(x)的最大值和最小值,并求出相应x的值.