已知函数
,其中m,a均为实数.
(1)求
的极值;
(2)设
,若对任意的
,
恒成立,求
的最小值;
(3)设
,若对任意给定的
,在区间
上总存在
,使得
成立,求
的取值范围.
设各项均为正数的数列
的前n项和为Sn,已知
,且
对一切
都成立.
(1)若λ=1,求数列
的通项公式;
(2)求λ的值,使数列
是等差数列.
如图,在平面直角坐标系
中,已知
,
,
是椭圆
上不同的三点,
,
,
在第三象限,线段
的中点在直线
上.
(1)求椭圆的标准方程;
(2)求点C的坐标;
(3)设动点
在椭圆上(异于点
,
,
)且直线PB,PC分别交直线OA于
,
两点,证明
为定值并求出该定值.
一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形
(如图所示,其中O为圆心,
在半圆上),设
,木梁的体积为V(单位:m3),表面积为S(单位:m2).
(1)求V关于θ的函数表达式;
(2)求
的值,使体积V最大;
(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.
如图,在三棱柱
中,侧面
为菱形, 且
,
,
是
的中点.
(1)求证:平面
平面
;
(2)求证:
∥平面
.