如图(a)所示,平行金属板A和B间的距离为d,现在A、B板上加上如图(b)所示的方波形电压,t=0时A板比B板的电势高,电压的正向值为U0,反向值也为U0,现有由质量为m的带正电且电荷量为q的粒子组成的粒子束,从AB的中点O以平行于金属板方向OO'的速度v0=不断射入,所有粒子在AB间的飞行时间均为T,不计重力影响。试求:
(1)粒子打出电场时位置离O'点的距离范围
(2)粒子射出电场时的速度大小及方向
(3)若要使打出电场的粒子经某一垂直纸面的圆形区域匀强磁场偏转后,都能通过圆形磁场边界的一个点处,而便于再收集,则磁场区域的最小半径和相应的磁感强度是多大?
如图所示,一圆柱形绝热容器竖直放置,通过绝热活塞封闭着摄氏温度为t1的理想气体,活塞的质量为m,横截面积为S,与容器底部相距h1。现通过电热丝给气体加热一段时间,使其温度上升到(摄氏)t2,若这段时间内气体吸收的热量为Q,已知大气压强为p0,重力加速度为g,求:
(1)气体的压强.
(2)这段时间内活塞上升的距离是多少?
(3)这段时间内气体的内能如何变化,变化了多少?
(18)如图所示,光滑的定滑轮上绕有轻质柔软细线,线的一端系一质量为3m的重物,另一端系一质量为m、电阻为r的金属杆。在竖直平面内有间距为L的足够长的平行金属导轨PQ、EF,在QF之间连接有阻值为R的电阻,其余电阻不计,磁感应强度为B0的匀强磁场与导轨平面垂直,开始时金属杆置于导轨下端QF处,将重物由静止释放,当重物下降h时恰好达到稳定速度而匀速下降。运动过程中金属杆始终与导轨垂直且接触良好,(忽略所有摩擦,重力加速度为g),求:
(1)电阻R中的感应电流方向;
(2)重物匀速下降的速度v;
(3)重物从释放到下降h的过程中,电阻R中产生的焦耳热QR;
(4)若将重物下降h时的时刻记作t=0,速度记为v0,从此时刻
起,磁感应强度逐渐减小,若此后金属杆中恰好不产生感应电流,则磁感应强度B怎样随时间t变化(写出B与t的关系式)
一质量为1kg的物块置于水平地面上。现用一个水平恒力F 拉物块,一段时间后撤去恒力F,已知从物体开始运动到停止,经历的时间为4s,运动的位移为m,物体与地面间的动摩擦因数为
。(g=10m/s2)
(1)求恒力F的大小
(2)若力F的大小可调节,其与竖直方向的夹角为也可以调节,如图所示,其他条件不变,若在力F作用下物体匀速运动,求力F的最小值及此时
的大小
如图所示,两平行光滑的金属导轨MN、PQ固定在水平面上,相距为L,处于竖直向下的磁场中整个磁场由n个宽度皆为x0的条形匀强磁场区域1、2、…、n组成,从左向右依次排列,磁感应强度的大小分别为B、2B、3B、…、nB,两导轨左端MP间接入电阻R,一质量为m的金属棒ab垂直于MN、PQ放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。
⑴对导体棒ab施加水平向右的力,使其从图示位置开始运动并穿过n个磁场区,求导体棒穿越磁场区1的过程中通过电阻R的电荷量q;
⑵对导体棒ab施加水平向右的恒力F0,让它从磁场区1左侧边界处开始运动,当向右运动距时做匀速运动,求棒通过磁场区1所用的时间t;
⑶对导体棒ab施加水平向右的拉力,让它从距离磁场区1左侧x= x0的位置由静止开始做匀加速运动,当棒ab进入磁场区1时开始做匀速运动,此后在不同的磁场区施加不同的拉力,使棒ab保持做匀速运动穿过整个磁场区,求棒ab通过第i磁场区时的水平拉力Fi和棒ab在穿过整个磁场区过程中回路产生的电热Q。
如图所示,在坐标系xOy第二象限内有一圆形匀强磁场区域(图中未画出),磁场方向垂直xOy平面.在x轴上有坐标(-2l0,0)的P点,三个电子a、b、c以相等大小的速度沿不同方向从P点同时射入磁场区,其中电子b射入方向为+y方向,a、c在P点速度与b速度方向夹角都是θ=.电子经过磁场偏转后都垂直于y轴进入第一象限,电子b通过y轴Q点的坐标为y=l0,a、c到达y轴时间差是t0.在第一象限内有场强大小为E,沿x轴正方向的匀强电场.已知电子质量为m、电荷量为e,不计重力.求:
(1) 电子在磁场中运动轨道半径和磁场的磁感应强度B.
(2) 电子在电场中运动离y轴的最远距离x.
(3) 三个电子离开电场后再次经过某一点,求该点的坐标和先后到达的时间差Δt.