(为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法调查该地区老人情况:男老年人需要提供帮助40人,不需要提供帮助160人;女老年人需要提供帮助30人,不需要提供帮助270人.
(Ⅰ)根据调查数据制作2×2列联表;
(Ⅱ)能否有99℅的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
参考数据 |
当![]() |
当![]() |
|
当![]() |
|
当![]() ![]() |
已知圆的极坐标方程为: .
⑴将极坐标方程化为普通方程;
⑵若点P(x,y)在该圆上,求x+y的最大值和最小值.
已知矩阵A=,若矩阵A属于特征值6的一个特征向量为α1=
,属于特征值1的一个特征向量为α2=
.求矩阵A,并写出A的逆矩阵.
(本小题满分16分)
已知,
,且直线
与曲线
相切.
(1)若对内的一切实数
,不等式
恒成立,求实数
的取值范围;
(2)当时,求最大的正整数
,使得对
(
是自然对数的底数)内的任意
个实数
都有
成立;
(3)求证:.
已知有穷数列共有
项(整数
),首项
,设该数列的前
项和为
,且
其中常数
⑴求
的通项公式;⑵若
,数列
满足
求证:;
⑶若⑵中数列满足不等式:
,求
的最大值.
(本小题满分15分)
给定椭圆C:,称圆心在原点O、半径是
的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为
,其短轴的一个端点到点
的距离为
.
(1)求椭圆C和其“准圆”的方程;
(2)若点是椭圆C的“准圆”与
轴正半轴的交点,
是椭圆C上的两相异点,且
轴,求
的取值范围;
(3)在椭圆C的“准圆”上任取一点,过点
作直线
,使得
与椭圆C都只有一个交点,试判断
是否垂直?并说明理由.