如图,在长为52宽为42的大矩形内有一个边长为18的小正方形,现向大矩形内
随机投掷一枚半径为1的圆片,求:
(Ⅰ)圆片落在大矩形内部时,其圆心形成的图形面积;
(Ⅱ)圆片与小正方形及内部有公共点的概率.
已知
(1)若p > 1时,解关于x的不等式;
(2)若对
时恒成立,求p的范围.
数列{an}中a1 = 2,,{bn}中
.
(1)求证:数列{bn}为等比数列,并求出其通项公式;
(2)当时,证明:
.
已知点A(– 2,0),B(2,0),动点P满足:,且
.
(1)求动点P的轨迹G的方程;
(2)过点B的直线l与轨迹G交于两点M、N.试问在x轴上是否存在定点C,使得为常数.若存在,求出点C的坐标;若不存在,说明理由.
已知圆C:,直线l:
.
(1)证明:不论m取什么实数时,直线l与圆恒交于两点;
(2)求直线l被圆C截得的线段的最短长度以及此时直线l的方程.
数列{an}中,a1 = 1,当时,其前n项和满足
(1)求Sn的表达式;
(2)设,数列{bn}的前n项和为Tn,求Tn.