数列{an}中a1 = 2,,{bn}中.(1)求证:数列{bn}为等比数列,并求出其通项公式;(2)当时,证明:.
已知函数,其中且m为常数. (1)试判断当时函数在区间上的单调性,并证明; (2)设函数在处取得极值,求的值,并讨论函数的单调性.
已知函数. (1)试求函数的递减区间; (2)试求函数在区间上的最值.
已知曲线C上的动点满足到定点的距离与到定点距离之比为. (1)求曲线的方程; (2)过点的直线与曲线交于两点,若,求直线的方程.
如图,在四棱锥中,,,为正三角形,且平面平面. (1)证明:; (2)求二面角的余弦值.
在中,角所对的边分别为,且成等差数列. (1)求角的大小; (2)若,求边上中线长的最小值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号