某品牌电视生产厂家有、
两种型号的电视参加了家电下乡活动,若厂家对
、
两种型号电视机的投放金额分别为
、
万元,农民购买电视机获得的补贴分别为
、
万元,已知
、
两种型号电视机的投放总金额为10万元,且
、
两种型号电视机的投放金额均不低于1万元.设这次活动中农民得到的补贴为
万元,写出
与
的函数关系式,并求补贴最多的方案.(精确到
,参考数据:
)
若x、y满足(x-1)2+(y+2)2=4,求S=2x+y的最大值和最小值.
已知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4 (m∈R).
求直线l被圆C截得的弦长的最短长度及此时的直线方程.
已知点P(6,4)与定直线l1:y=4x,直线l2过点P与直线l1相交于第一象限内的点Q,且与x轴的正半轴交于点M,求使△OMQ面积最小的直线l2的方程.
已知△ABC的顶点A(1,2)、B(-1,-1),直线l:2x+y-1=0是△ABC的一个内角平分线,求BC边所在直线的方程及点C到AB的距离.
下面三条直线l1:4x+y=4,l2:mx+y=0,l3:2x-3my=4不能构成三角形.求m的取值范围.