使得函数值为零的自变量的值称为函数的零点。例如,对于函数,令y=0,可得x=1,我们就说1是函数
的零点。
己知函数 (
m为常数)。
(1)当=0时,求该函数的零点;
(2)证明:无论取何值,该函数总有两个零点;
(3)设函数的两个零点分别为和
,且
,此时函数图象与x轴的交点分
别为A、B(点A在点B左侧),点M在直线上,当MA+MB最小时,求直线AM的函数解析式。
(1)计算: +︱
-2︳
(2)解不等式组 ,并且把解集在数轴上表示出来.
已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交于点G,∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.
(1)求证:△EGB是等腰三角形
(2)若纸片DEF不动,问△ABC绕点F逆时针旋转最小度时,四边形ACDE成为以ED为底的梯形(如图(2)),求此梯形的高。
如图所示,以平行四边形ABCD的顶点A为圆心,AB为半径作圆,交AD,BC于E,F,延长BA交⊙A于G,求证:弧GE=弧EF
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元。商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?
已知一元二次方程有两个不相等的实数根.
111(1)求的取值范围;
(2)如果是符合条件的最大整数,且一元二次方程
与
有一个相同的根,求此时
的值.