(2011贵州黔南,21,10分)为了美化都匀市环境,打造中国优秀旅游城市,现欲将剑江河进行清淤疏通改造,现有两家清淤公司可供选择,这两家公司提供信息如表所示:
单位 |
清淤费用(元/m3) |
清淤处理费(元) |
甲公司 |
18 |
5000 |
乙公司 |
20 |
0 |
(1)若剑江河首批需要清除的淤泥面积大约为1.2万平方米,平均厚度约为0.4米,那么请哪个清淤公司进行清淤费用较省,请说明理由。(体积可按面积×高进行计算)
(2)若甲公司单独做了2天,乙公司单独做了3天,恰好完成全部清淤任务的一半;若甲公司先做2天,剩下的清淤工作由乙公司单独完成,则乙公司所用时间恰好比甲公司单独完成清淤任务所用时间多1天,则甲、乙两公司单独完成清淤任务各需多少时间。
在不透明的箱子中,装有红、白、黑各一个球,它们除了颜色之外,没有其他区别。
(1)随机地从箱子里取出一个球,则取出红球的概率是多少?
(2)随机地从箱子里取出1个球,然后放回,再摇匀取出第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率。
已知:ΔABC在坐标平面内,三个顶点的坐标为A(0,3)、B(3,4)、C(2,2),(正方形网格中,每个小正方形边长为1个单位长度)
(1)画出ΔABC向下平移4个单位得到的ΔA1B1C1。
(2)以B为位似中心,在网格中画出ΔA2BC2,使ΔA2BC2与ΔABC位似,且位似比2 :1,直接写出C2点坐标是。
(3)ΔA2BC2的面积是平方单位。
解方程:4x2-8x-1=0
(1)问题背景:如图1,中,
,
,
的平分线交直线
于
,过点
作
,交直线
于
.请探究线段
与
的数量关系.(事实上,我们可以延长
与直线
相交,通过三角形的全等等知识解决问题.)
结论:线段与
的数量关系是______ (请直接写出结论);
(2)类比探索:在(1)中,如果把改为
的外角
的平分线,其他条件均不变(如图2),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由;
(3)拓展延伸:在(2)中,如果,且
(
),其他条件均不变(如图3),请你直接写出
与
的数量关系.结论:
_________
(用含
的代数式表示).
正方形与扇形
有公共顶点
,分别以
,
所在直线为
轴、
轴建立平面直角坐标系.如图所示,正方形两个顶点
、
分别在
轴、
轴正半轴上移动,设
,
,
(1)当时,正方形与扇形不重合的面积是;此时直线
对应的函数关系式是;
(2)当直线与扇形
相切时.求直线
对应的函数关系式;
(3)当正方形有顶点恰好落在弧上时,求正方形与扇形不重合的面积.