研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?
操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.
活动结果:摸球实验活动一共做了50次,统计结果如下表:
球的颜色 |
无记号 |
有记号 |
||
红色 |
黄色 |
红色 |
黄色 |
|
摸到的次数 |
18 |
28 |
2 |
2 |
推测计算:由上述的摸球实验可推算:
(1)盒中红球、黄球各占总球数的百分比分别是多少?
(2)盒中有红球多少个?
如图是某数学兴趣小组参加“奥数”后所得成绩绘制成的频数,频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题(成绩取整数,满分为100分)
分组 |
0﹣19.5 |
19.5﹣39.5 |
39.5﹣59.5 |
59.5﹣79.5 |
79.5﹣100 |
合计 |
频数 |
1 |
5 |
6 |
30 |
b |
50 |
频率 |
0.02 |
a |
0.12 |
0.60 |
0.16 |
1 |
(1)频数、频率分布表中a= ,b= .
(2)补全频数分布直方图.
(3)若在80分以上的小组成员中选3人参加下一轮竞赛,小明本次竞赛的成绩为90分,他被选中的概率是多少?
(4)从该图中你还能获得哪些数学信息?(填写一条即可)
如图,在△ABC中,利用尺规作图,画出△ABC的外接圆或内切圆(任选一个.不写作法,必须保留作图痕迹)
先化简代数式,再从0,1,2三个数中选择适当的数作为a的值代入求值.
在平面直角坐标系中, 抛物线+
与直线
交于A, B两点,点A在点B的左侧.
(1)如图1,当时,直接写出A,B两点的坐标;
(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;
(3)如图2,抛物线+
与
轴交于C,D两点(点C在点D的左侧).在直线
上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时
的值;若不存在,请说明理由.
图1图2
如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.
(1) 试判断BE与FH的数量关系,并说明理由;
(2) 求证:∠ACF=90°;
(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.
图1图2