用144分米长的铁丝围成一个长方体框架,一只蚂蚁从顶点A出发,沿棱爬行,经顶点BC到达D,已知蚂蚁每分钟爬行6分米经BC比AB多用1分钟,经CD比BC少用2分钟,这个长方体框架的长宽高各是多少?
如图,抛物线与x轴交于A,0两点,将抛物线向上移动4个单位长度后得到一条新抛物线,它的顶点在x轴上,新抛物线上的D,E两点分别是A,O两点平移后的对应点。设两条抛物线、线段AD和线段OE围成的面积为S。P(m,n)是新抛物线上一个动点,切满足
⑴求新抛物线的解析式。
⑵当m=-2时,点F的坐标为,试判断直线DF与AE的位置关系,并说明理由。
⑶当的值最小时,求△AEP的面积与S的数量关系。
如图,圆O的直径为5,在圆O上位于直径AB的异侧有定点C和动点P,已知BC:CA=4: 3,点P在半圆弧AB上运动(不与A、B两点重合),过点C作CP的垂线CD交PB的延长线于D点.
(1)求证:AC·CD=PC·BC;
(2)当点P运动到AB弧中点时,求CD的长;
(3)当点P运动到什么位置时,△PCD的面积最大?并求出这个最大面积S。
在梯形ABCD中,DC∥AB,DE⊥AB于点E。
阅读理解:在图一中,延长梯形ABCD的两腰AD,BC交于点P,过点D作DF∥CB交AB于点F,得到图二;四边形BCDF的面积为S,△ADF的面积为S1,△PDC的面积为S2。
解决问题:
⑴在图一中,若DC=2,AB=8,DE=3,则S =,S1 =,S2 =,则=。
⑵在图二中,若AB=a,DC=b,DE=h,则=,并写出理由。
拓展应用:如图三,现有一块地△PAB需进行美化,□DEFC的四个顶点在△PAB的三边上,且种植茉莉花;若△PDC,△ADE,△CFB的面积分别为2m2,3 m2,5 m2且种植月季花。已知1 m2茉莉花的成本为120元,1 m2月季的成本为80元。试利用⑵中的结论求□DEFC的面积,并求美化后的总成本是多少元?
已知某种水果的批发单价与批发量的函数关系如图1所示:
⑴请说明图中①②两段函数图象的实际意义。
⑵写出批发该种水果的资金金额w元与批发量m kg之间的函数关系式;在图2的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果。
⑶经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系式如图3所示,该经销商以每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日的利润最大。