如图,A、C两岛之间有一片暗礁,一艘小船于某日上午8时从A岛出发,以10
海里/小时的速度,沿北偏东75°方向直线航行,下午1时到达B处.然后以同样的速度,
沿北偏东15°方向直线航行,下午4时到达C岛.
(1)求A、C两岛之间的直线距离;
(2)求∠BAC的正弦值.
在直角坐标系中,动点
与定点
的距离和它到定直线
的距离之比是
,设动点
的轨迹为
,
是动圆
上一点.
(1)求动点的轨迹
的方程;
(2)设曲线上的三点
与点
的距离成等差数列,若线段
的垂直平分线与
轴的交点为
,求直线
的斜率
;
(3)若直线与
和动圆
均只有一个公共点,求
、
两点的距离
的最大值.
在中,三个内角
,
,
的对边分别为
,
,
,其中
, 且
(1)求证:是直角三角形;
(2)如图6,设圆过
三点,点
位于劣弧上,求
面积最大值.
如图5(1)中矩形中,已知
,
,
分别为
和
的中点,对角线
与
交于
点,沿
把矩形
折起,使平面
与平面
所成角为
,如图5(2).
(1)求证:;
(2)求与平面
所成角的正弦值.
有一个3×4×5的长方体, 它的六个面上均涂上颜色. 现将这个长方体锯成60个1×1×1的小正方体,从这些小正方体中随机地任取1个,设小正方体涂上颜色的面数为.
(1)求的概率;
(2)求的分布列和数学期望.
已知等比数列的前
项和为
,
,且
,
,
成等差数列.
(1)求数列通项公式;
(2)设,求数列
前
项和
.