(本小题满分12分)如图,已知
与圆
相切于点
,半径
,
交于点
.
(Ⅰ)求证:;
(Ⅱ)若圆的半径为3,
,求
的长度.
对于给定数列,如果存在实常数
使得
对于任意
都成立,我们称数列
是“
数列”.
(Ⅰ)若,
,
,数列
、
是否为“
数列”?若是,指出它对应的实常数
,若不是,请说明理由;
(Ⅱ)证明:若数列是“
数列”,则数列
也是“
数列”;
(Ⅲ)若数列满足
,
,
为常数.求数列
前
项的和.
已知函数
(Ⅰ)若,求函数
的极小值;
(Ⅱ)设函数,试问:在定义域内是否存在三个不同的自变量
使得
的值相等,若存在,请求出
的范围,若不存在,请说明理由?
如图,在矩形中,
分别为四边的中点,且都在坐标轴上,设
,
.
(Ⅰ)求直线与
的交点
的轨迹
的方程;
(Ⅱ)过圆上一点
作圆的切线与轨迹
交于
两点,若
,试求出
的值.
如图,在三棱锥中,
,
,设顶点
在底面
上的射影为
.
(Ⅰ)求证:;
(Ⅱ)设点在棱
上,且
,试求二面角
的余弦值.
现有4个人去参加春节联欢活动,该活动有甲、乙两个项目可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个项目联欢,掷出点数为1或2的人去参加甲项目联欢,掷出点数大于2的人去参加乙项目联欢.
(Ⅰ)求这4个人中恰好有2人去参加甲项目联欢的概率;
(Ⅱ)求这4个人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数的概率;
(Ⅲ)用分别表示这4个人中去参加甲、乙项目联欢的人数,记
,求随机变量
的分布列与数学期望
.