(本小题满分12分)如图,在直三棱柱中,平面
侧面
.
(Ⅰ)求证:;
(Ⅱ)若直线与平面
所成角是
,锐二面角
的平面角是
,试判断
与
的大小关系,并予以证明.
记Sn为等差数列{an}的前n项和,已知S9=-a5.
(1)若a3=4,求{an}的通项公式;
(2)若a1>0,求使得Sn≥an的n的取值范围.
某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
满意 |
不满意 |
|
男顾客 |
40 |
10 |
女顾客 |
30 |
20 |
(1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?
附: .
P( K 2≥ k) |
0.050 |
0.010 |
0.001 |
k |
3.841 |
6.635 |
10.828 |
已知
(1)当 时,求不等式 的解集;
(2)若 时, ,求 的取值范围.
在极坐标系中,O为极点,点 在曲线 上,直线l过点 且与 垂直,垂足为P.
(1)当 时,求 及l的极坐标方程;
(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.
已知函数 .证明:
(1) 存在唯一的极值点;
(2) 有且仅有两个实根,且两个实根互为倒数.