某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件.
(1)当售价定为30元时,一个月可获利多少元?
(2)当售价定为每件多少元时,一个月的获利最大?最大利润是多少元?
如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.
求证:(1)⊿AFD≌⊿CEB.
(2)四边形ABCD是平行四边形.
如图 ,□ABCD中,BD⊥AB,AB=12cm,AC=26cm,求AD、BD长.
如图12,在□ABCD中,已知点E和点F分别在AD和BC上,且AE=CF,连结CE和AF,试说明四边形AFCE是平行四边形.
如图,在□ABCD中,已知对角线AC和BD相交于点O,△AOB的周长为25,AB=12,求对角线AC与BD的和.
如图,直线AC∥BD,连结AB,直线AB、BD、AC把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连结PA、PB构成∠PAC、∠APB、∠PBD三个角。(提示:有公共端点的两条重合的射线组成的角是0度角.)
(1)当动点P落在第①部分时,试说明∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)当动点P落在第③、④部分时,全面探究∠APB、∠PAC、∠PBD之间的数量关系,并画出相应的图形、写出相应的结论.请选择一种结论加以说明.