(本小题满分12分)已知,证明:
.
已知函数,
(1)当
时,求
的最大值和最小值(2)若
在
上是单调增函数,且
,求
的取值范围.
已知函数的定义域为A,指数函数
(
>0且
≠1)(
)的值域为B.(1)若
,求
;(2)若
=(
,2),求
的值.
.数列的各项均为正数,
为其前
项和,对于任意
,总有
成等差数列.(Ⅰ)求数列
的通项公式;(Ⅱ)设数列
的前
项和为
,且
,求证:对任意实数
(
是常数,
=2.71828
)和任意正整数
,总有
2;(Ⅲ) 正数数列
中,
.求数列
中的最大项.
(本小题满分13分)已知点是椭圆
上的一点,
,
是椭圆的两个焦点,且满足
.(Ⅰ)求椭圆的方程及离心率;(Ⅱ)设点
,
是椭圆上的两点,直线
,
的倾斜角互补,试判断直线
的斜率是否为定值?并说明理由.
设
的图像经过点如图所示,(Ⅰ)求
的解析式;
(Ⅱ)若对恒成立,
求实数m的取值范围.