一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外其余都相同,搅匀后从中任意摸出1个球,记录下颜色后放回袋中并搅匀,再从中任意摸出1个球。请用画树状图的方法列出所有可能的结果,并写出两次摸出的球颜色相同的概率。
在矩形ABCD中, AC,BD相交于点O,AE平分∠BAD交BC于点E,∠EAO=15°,求∠BEO的度数.
已知,求下列各式的值.
(1)
(2)
(1)解不等式组:;
(2)解不等式,并写出该不等式组的整数解.
(本题12分)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。如对于任意正实数、x,可作变形:x+
=(
-
)2+2
,因为(
-
)2≥0,所以x+
≥2
(当x=
时取等号).
记函数y=x+(a>0,x>0),由上述结论可知:当x=
时,该函数有最小值为2
.
直接应用: 已知函数y1=x(x>0)与函数y2 = (x>0),则当x= 时,y1+y2取得最小值为.
变形应用: 已知函数y1=x+1(x>-1)与函数y2=(x+1)2+4(x>-1),求 的最小值,并指出取得该最小值时相应的x的值.
实际应用:汽车的经济时速是指汽车最省油的行驶速度。某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(+
)升。若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升.
①求y关于x的函数关系式(写出自变量x的取值范围);
②求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).
(本题12分)如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.
(1)若∠1=70°,求∠MKN的度数.
(2)△MNK的面积能否小于?若能,求出此时∠1的度数;若不能,试说明理由.
(3)如何折叠能够使△MNK的面积最大?请你利用备用图探究可能出现的情况,求出最大值.