两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?
某楼盘准备以每平方米元的均价对外销售,由于国务院有关房地产的新政策出台,购房者持币观望.为了加快资金周转,房地产开发商对价格进行两次下调,最终以每平方米
元的均价开盘销售.
(1)求平均每次下调的百分率;
(2)某人准备以每平方米元的均价购买一套
平方米的房子.开发商还给予以下两种优惠方案以供选择:①一次付清全款打九九折;②一次付清全款不打折,送五年物业管理费.如该楼盘物业管理费是每月
元/米2.请问哪种方案更优惠?
( 10分)如图,在平面直角坐标系中,Rt△OAB的直角边OA在x轴的正半轴上,点B在第象限,将△OAB绕点O按逆时针方向旋转至△OA′B′,使点B的对应点B′落在y轴的正半轴上,已知OB=2,
(1)求点B和点A′的坐标;(2)求经过点B和点B′的直线所对应的一次函数解析式,并判断点A是否在直线BB′上。
已知:如图,四边形是矩形,
和
都是等边三角形,且点
在矩形上方,点
在矩形内.
(1) 求的度数;
(2) 求证:.
(本题11分)如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.为二次函数图象上的一个动点,过点P作
轴的垂线,垂足为D(m,0),并与直线OA交于点C.
⑴ 求出二次函数的解析式;
⑵ 当点P在直线OA的上方时,求线段PC的最大值.
⑶ 当时,探索是否存在点
,使得
为等腰三角形,如果存在,求出
的坐标;如果不存在,请说明理由.
(本题10分)如图,梯形ABCD中,AD∥BC,BC=2AD,F、G分别为边BC、CD的中点,连接AF,FG,过D作DE∥GF交AF于点E。
(1)证明△AED≌△CGF
(2)若梯形ABCD为直角梯形,判断四边形DEFG是什么特殊四边形?并证明你的结论。
![]() |