如图,已知A,B两点的坐标分别为A(0,),B(2,0)直线AB与反比例函数
的图像交与点C和点D(-1,a).
(1)求直线AB和反比例函数的解析式;
(2)求∠ACO的度数;
(3)将△OBC绕点O逆时针方向旋转α角(α为锐角),得到△OB′C′,当α为多少度时OC′⊥AB,并求此时线段AB′的长.
某大学为了解大学生对中国共产党党史知识的学习情况,在大学一年级和二年级举行有关党史知识测试活动.现从一、二两个年级中各随机抽取20名学生的测试成绩(满分50分,30分及30分以上为合格;40分及40分以上为优秀)进行整理、描述和分析,给出了下面的部分信息.
大学一年级20名学生的测试成绩为:
39,50,39,50,49,30,30,49,49,49,43,43,43,37,37,37,43,43,37,25.
大学二年级20名学生的测试成绩条形统计图如图所示;两个年级抽取的学生的测试成绩的平均数、众数、中位数、优秀率如下表所示:
年级 |
平均数 |
众数 |
中位数 |
优秀率 |
大一 |
|
|
43 |
|
大二 |
39.5 |
44 |
|
|
请你根据上面提供的所有信息,解答下列问题:
(1)上表中 , , , , ;
根据样本统计数据,你认为该大学一、二年级中哪个年级学生掌握党史知识较好?并说明理由(写出一条理由即可);
(2)已知该大学一、二年级共1240名学生参加了此次测试活动,通过计算,估计参加此次测试活动成绩合格的学生人数能否超过1000人;
(3)从样本中测试成绩为满分的一、二年级的学生中随机抽取两名学生,用列举法求两人在同一年级的概率.
如图,四边形 是平行四边形, 且分别交对角线 于点 , .
(1)求证: ;
(2)当四边形 分别是矩形和菱形时,请分别说出四边形 的形状.(无需说明理由)
计算求解:
(1)计算 ;
(2)解方程组 .
数学课上,有这样一道探究题.
如图,已知 中, , , ,点 为平面内不与点 、 重合的任意一点,连接 ,将线段 绕点 顺时针旋转 ,得线段 ,连接 、 点 、 分别为 、 的中点,设直线 与直线 相交所成的较小角为 ,探究 的值和 的度数与 、 、 的关系.
请你参与学习小组的探究过程,并完成以下任务:
(1)填空:
【问题发现】
小明研究了 时,如图1,求出了 的值和 的度数分别为 , ;
小红研究了 时,如图2,求出了 的值和 的度数分别为 , ;
【类比探究】
他们又共同研究了 时,如图3,也求出了 的值和 的度数;
【归纳总结】
最后他们终于共同探究得出规律: (用含 、 的式子表示); (用含 的式子表示).
(2)求出 时 的值和 的度数.
如图,抛物线 与 轴交于 、 两点,与 轴交于点 ,对称轴 与 轴交于点 ,直线 ,点 是直线 上方抛物线上一动点,过点 作 ,垂足为 ,交 于点 ,连接 、 、 、 .
(1)抛物线的解析式为 ;
(2)当四边形 面积最大时,求点 的坐标;
(3)在(2)的条件下,连接 ,点 是 轴上一动点,在抛物线上是否存在点 ,使得以 、 、 、 为顶点,以 为一边的四边形是平行四边形.若存在,请直接写出点 的坐标;若不存在,说明理由.