如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米。
(1)这个梯子的顶端距地面有多高?
(2)如果梯子的顶端下滑4米,那么梯子的底部在水平方向也滑动了4米吗?
(本题10分)如图,一楼房AB后有一假山,其斜坡CD坡比为1:,山坡坡面上点 E处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得点E的俯角为45°.
(1)求点E距水平面BC的高度;
(2)求楼房AB的高。(结果精确到0.1米,参考数据≈1.414,
≈1.732).
如图,在□ABCD中,∠ABC的平分线交AD于点E,交CD的延长线于点F,
(1)请写出图中的等腰三角形,并证明其中一个三角形是等腰三角形;
(2)若E恰好是AD的中点,AB长为4,∠ ABC=60º,求ΔBCF的面积.
(本题8分)如图所示,正方形网格中的每个小正方形边长都是1,每个小格顶点称为格点,请以格点为顶点,在图甲、图乙中画出两个不全等但面积都是16的菱形.
(本题10分)
(1)计算:(-2015)0 ×|-3|-32+;
(2)解方程:-
= 2.
(黄石)已知双曲线(
),直线
:
(
k<0)过定点F且与双曲线交于A,B两点,设A(
,
),B(
,
)(
),直线
:
.
(1)若,求△OAB的面积S;
(2)若AB=,求k的值;
(3)设N(0,),P在双曲线上,M在直线l2上且PM∥x轴,求PM+PN最小值,并求PM+PN取得最小值时P的坐标.(参考公式:在平面直角坐标系中,若A(
,
),B(
,
)则A,B两点间的距离为AB=
.