在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(﹣3,0)、B(1,0),过顶点C作CH⊥x轴于点H.
(1)直接填写:a= ,b= ,顶点C的坐标为 ;
(2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;
(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.
某公园有一滑梯,横截面如图薪示,AB表示楼梯,BC表示平台,CD表示滑道.若点E,F均在线段AD上,四边形BCEF是矩形,且sin∠BAF=,BF=3米,BC=1米,CD=6米.求:
(1) ∠D的度数;
(2)线段AE的长.
玉树地震后,有一段公路急需抢修.此项工程原计划由甲工程队独立完成,需要20天.在甲工程队施工4天后,为了加快工程进度,又调来乙工程队与甲工程队共同施工,结果比原计划提前10天,为抗震救灾赢得了宝贵时间.求乙工程队独立完成这项工程需要多少天.
有A,B,C,D四个城市,人口和面积如下表所示:
![]() |
A城市 |
B城市 |
C城市 |
D城市 |
人口(万人) |
300 |
150 |
200 |
100 |
面积(万平方公里) |
20 |
5 |
10 |
4 |
(1)问A城市的人口密度是每平方公里多少人?
(2)请用最恰当的统计图表示这四个城市的人口密度.
在完全相同的五张卡片上分别写上1,2,3,4,5五个数字后,装入一个不透明的口袋内搅匀.
(1)从口袋内任取一张卡片,卡片上数字是偶数的概率是;
(2)从口袋内任取一张卡片记下数字后放回.搅匀后再从中任取一张,求两张卡片上数字和为5的概率.
已知:如图,点C是线段AB的中点,CE=CD,∠ACD=∠BCE,
求证:AE=BD.