(本小题满分12分)
已知函数的图象与
轴的交点为
,它在
轴右侧的第一个最高点和第一个最低点的坐标分别为
和
.
(1)求的解析式;
(2)若锐角满足
,求
的值.
如图所示,扇形,圆心角
的大小等于
,半径为2,在半径
上有一动点
,过点
作平行于
的直线交弧
于点
.
(1)若是半径
的中点,求线段
的长;
(2)设,求
面积的最大值及此时
的值.
已知数列为等差数列,且
.
(1)求数列的通项公式;
(2)证明.
已知函数(
,
为自然对数的底数).
(1)若曲线在点
处的切线平行于
轴,求
的值;
(2)求函数的极值;
(3)当的值时,若直线
与曲线
没有公共点,求
的最大值.
(注:可能会用到的导数公式:;
)
已知椭圆C:(
)的短轴长为2,离心率为
.
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足
(O为坐标原点),当
时,求实数
的取值范围?
从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) |
![]() |
![]() |
![]() |
![]() |
频数(个) |
5 |
10 |
20 |
15 |
(1)根据频数分布表计算苹果的重量在的频率;
(2)用分层抽样的方法从重量在和
的苹果中共抽取4个,其中重量在
的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在和
中各有1个的概率.