游客
题文

(11·佛山)阅读材料
我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;
比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形;
我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;
请解决以下问题:
如图,我们把满足AB=CD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;
(1)写出筝形的两个性质(定义除外);
(2)写出筝形的两个判定方法(定义除外),并选出一个进行证明;

科目 数学   题型 解答题   难度 较难
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

如图,AC是⊙o的直径,PA切⊙o于点A,点B是⊙o上的-点,且∠BAC=30°,∠APB=60°。
(1)求证:PB是⊙o的切线;
(2)若⊙o的半径为2,求弦AB及PA、PB的长。

如图,四边形ABCD的∠BAD=∠C=90°,AB="A" D,AE⊥BC于E,ΔBEA旋转-定角度后能与ΔDFA重合。

①旋转中心是哪-点?
②旋转了多少度?
③若AE=5cm,求四边形ABCD的面积。

某商场销售某品牌童装,平均每天可以售出20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,经调查发现,每件童装每降价1元,商场平均可多销售2件,若商场每天想盈利1200元,则童装应降价多少元?

如图,在平面直角坐标系中,每个小方格都是边长为1的正方形,有△ABC和△A1B1C1,其位置如图所示,

(1)将△ABC绕C点,按时针方向旋转时与△A1B1C1重合(直接填在横线上).
(2)在图中作出△A1B1C1关于原点O对称的△A2B2C2(不写作法).

解方程:(1)x2-2x-1=0(请用求根公式法求解) (2)(3x-1)2=4(2x+3)2

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号