(11·肇庆)(本小题满分8分)如图9.一次函数y=x+b的图象经过点B (-1,0),且与反比例函数 (k为不等于0的常数)的图象在第一象限交于点A (1,n).求:
(1)一次函数和反比例函数的解析式;
(2)当1≤x≤6时,反比例函数y的取值范围.
解下列方程组(每小题3分,共6分)
(1)
(2)
因式分解(每小题3分,共9分)
(1)
(2)
(3)
计算(每小题3分,共9分)
(1)
(2)
(3)
在平面直角坐标系中,有一点B(,
)的横纵坐标满足条件:
.
(1)求点B的坐标。
(2)如图1,过点B作BA⊥轴于A,BC⊥
轴于C,P为CB延长线上一点,OP交BA于E,若
,求P、E两点坐标。
(3)M为(2)中BC上一点,如图2,且OM⊥AM,Q为CM上一动点,F为OQ上一动点,∠FAO=∠COQ,ON、AN分别平分∠QOM与∠FAM,当Q点运动时,∠N变化吗?若不变,求其值;若变化,说明理由。
某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆。由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行进行电动汽车的安装。生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘(0<
<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务(每月完成的量相同),那么工厂有哪几种新工人的招聘方案?
(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?