(每小题6分,共12分)
(1)如图,BD与CD分别平分∠ABC和∠ACB,已知∠BDC=
,求∠A的度数。
(2)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,求∠1的度数.
直线经过点(3,5),求关于
的不等式
≥0的解集.
解方程:.
如图,一次函数(m<0)的图象经过定点A,与x轴交于点B,与y轴交于点E,AD⊥y轴于点D,将射线AB沿直线AD翻折,交y轴于点C.
(1)用含m的代数式分别表示点B,点E的坐标;
(2)若△ABC中AC边上的高为5,求m的值;
(3)若点P为线段AC中点,是否存在m的值,使△APD与△ABD相似?若存在,请求出m的值;若不存在,请说明理由.
如图,矩形ABCD中, AB=4,BC=2,点P是射线DA上的一动点,DE⊥CP,垂足为E,EF⊥BE与射线DC交于点F.
(1)若点P在边DA上(与点D、点A不重合).
①求证:△DEF∽△CEB;
②设AP=x,DF=y,求与
的函数关系式,并写出
的取值范围;
(2)当△EFC与△BEC面积之比为3︰16时,线段AP的长为多少?(直接写出答案,不必说明理由).
已知二次函数中,其函数
与自变量
之间的部分对应值如下表所示:
x |
…… |
0 |
1 |
2 |
3 |
4 |
5 |
…… |
y |
…… |
4 |
1 |
0 |
1 |
4 |
9 |
…… |
(1)当x=-1时,y的值为;
(2)点A(,
)、B(
,
)在该函数的图象上,则当
时,
与
的大小关系是;
(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式:;
(4)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函数的图象上,问:当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长吗?为什么?=】