游客
题文

(本小题满分12分)甲乙两人各有个材质、大小、形状完全相同的小球,甲的
小球上面标有五个数字,乙的小球上面标有五个数字.把各自的小球放
入两个不透明的口袋中,两人同时从各自的口袋中随机摸出个小球.规定:若甲摸出的小
球上的数字是乙摸出的小球上的数字的整数倍,则甲获胜,否则乙获胜.
(1)写出基本事件空间
(2)你认为“规定”对甲、乙二人公平吗?说出你的理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知函数,其中为常数.
(1)求函数的周期;
(2)如果的最小值为,求的值,并求此时的最大值及图像的对称轴方程.

已知圆锥母线长为6,底面圆半径长为4,点是母线的中点,是底面圆的直径,半径与母线所成的角的大小等于

(1)求圆锥的侧面积和体积.
(2)求异面直线所成的角;

如图,直线与抛物线(常数)相交于不同的两点,且为定值),线段的中点为,与直线平行的切线的切点为(不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点为切点).

(1)用表示出点、点的坐标,并证明垂直于轴;
(2)求的面积,证明的面积与无关,只与有关;
(3)小张所在的兴趣小组完成上面两个小题后,小张连,再作与平行的切线,切点分别为,小张马上写出了的面积,由此小张求出了直线与抛物线围成的面积,你认为小张能做到吗?请你说出理由.

函数的定义域为,若存在常数,使得对一切实数均成立,则称为“圆锥托底型”函数.
(1)判断函数是否为“圆锥托底型”函数?并说明理由.
(2)若是“圆锥托底型” 函数,求出的最大值.
(3)问实数满足什么条件,是“圆锥托底型” 函数.

某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张.为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.
(1)记2013年为第一年,每年发放的燃油型汽车牌照数构成数列,每年发放的电动型汽车牌照数为构成数列,完成下列表格,并写出这两个数列的通项公式;
(2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?







3



Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号