(11·天水)本题共13分(其中第Ⅰ小题6分,第Ⅱ小题7分)
Ⅰ.爱养花的李先生为选择一个合适的时间去参观2011年西安世界园艺博览会,他查阅了
5月10日至16日是(星期一至星期日)每天的参观人数,得到图(1)、图(2)所示的统
计图.其中图(1)是每天参观人数的统计图,图(2)是5月15日(星期六)这一天上午、
中午、下午和晚上四个时段参观人数的扇形统计图,请你根据统计图解答下面的问题:
(1)5月10日至16日这一周中,参观人数最多的是日是_ ▲ ,有_ ▲ 万人,
参观人数最少的是日是_ ▲ ,有_ ▲ 万人,中位数是_ ▲ .
(2)5月15日是(星期六)这一天,上午的参观人数比下午的参观人数多多少人?(精确
到1万人)
(3)如果李先生想尽可能选择参观人数较少的时间参观世园会,你认为选择什么时间较合
适?
Ⅱ.如图在等腰Rt△OBA和Rt△BCD中,∠OBA=∠BCD=90°,点A和点C都在双曲线
先化简,再求值:,其中
满足
.
如图,在矩形ABCD中,AC,BD交于点O,若BO=3,,求矩形ABCD的面积.
如图,已知:为边长是
的等边三角形,四边形
为边长是6的正方形. 现将等边
和正方形
按如图①的方式摆放,使点
与点
重合,点
、
、
在同一条直线上,
从图①的位置出发,以每秒1个单位长度的速度沿
方向向右匀速运动,当点
与点
重合时暂停运动,设
的运动时间为
秒(
).
(1)在整个运动过程中,设等边和正方形
重叠部分的面积为
,请直接写出
与
之间的函数关系式;
(2)如图②,当点与点
重合时,作
的角平分线
交
于点
,将
绕点
逆时针旋转,使边
与边
重合,得到
. 在线段
上是否存在
点,使得
为等腰三角形. 如果存在,求线段
的长度;若不存在,请说明理由.
(3)如图③,若四边形为边长是
的正方形,
的移动速度为每秒
个单位长度,其余条件保持不变.
开始移动的同时,
点从
点开始,沿折线
以每秒
个单位长度开始移动,
停止运动时,
点也停止运动. 设在运动过程中,
交折线
于
点,则当
时,求
的值.
如图,直线AB分别交y轴、x 轴于A、B两点,OA=2,,抛物线
过A、B两点.
(1)求直线AB和这个抛物线的解析式;
(2)设抛物线的顶点为D,求△ABD的面积
(3)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t 取何值时,MN的长度l有最大值?最大值是多少?
如图,梯形ABCD中,AD//BC,E为CD边的中点,F为AD延长线上一点,且满足DF+BF=BC.
(1)若∠A=90º,AD=3,AB=5,BC=9,求BE的长;
(2)求证:BE平分∠FBC.