如图,已知:为边长是
的等边三角形,四边形
为边长是6的正方形. 现将等边
和正方形
按如图①的方式摆放,使点
与点
重合,点
、
、
在同一条直线上,
从图①的位置出发,以每秒1个单位长度的速度沿
方向向右匀速运动,当点
与点
重合时暂停运动,设
的运动时间为
秒(
).
(1)在整个运动过程中,设等边和正方形
重叠部分的面积为
,请直接写出
与
之间的函数关系式;
(2)如图②,当点与点
重合时,作
的角平分线
交
于点
,将
绕点
逆时针旋转,使边
与边
重合,得到
. 在线段
上是否存在
点,使得
为等腰三角形. 如果存在,求线段
的长度;若不存在,请说明理由.
(3)如图③,若四边形为边长是
的正方形,
的移动速度为每秒
个单位长度,其余条件保持不变.
开始移动的同时,
点从
点开始,沿折线
以每秒
个单位长度开始移动,
停止运动时,
点也停止运动. 设在运动过程中,
交折线
于
点,则当
时,求
的值.
如图①,一条笔直的公路上有A、B、C 三地,B、C 两地相距 150 千米,甲、乙两辆汽车分别从B、C 两地同时出发,沿公路匀速相向而行,分别驶往C、B 两地.甲、乙两车到A 地的距离、
(千米)与行驶时间 x(时)的关系如图②所示.
根据图象进行以下探究:
(1)请在图①中标出 A地的位置,并作简要的文字说明;
(2)求图②中M点的坐标,并解释该点的实际意义;
(3)在图②中补全甲车的函数图象,求甲车到 A地的距离与行驶时间x的函数关系式;
(4)A地设有指挥中心,指挥中心及两车都配有对讲机,两部对讲机在15千米之内(含15千米)时能够互相通话,求两车可以同时与指挥中心用对讲机通话的时间.
研究表明一种培育后能繁殖的细胞在一定的环境下有以下规律:若有n 个细胞,经过第一周期后,在第1 个周期内要死去1个,会新繁殖(n-1)个;经过第二周期后,在第2 个周期内要死去2个,又会新繁殖(n-2)个;以此类推.例如, 细胞经过第x 个周期后时,在第x 个周期内要死去x个,又会新繁殖 (n-x)个。
周期序号 |
在第x周期后细胞总数 |
1 |
n-1+(n-1)=2(n-1) |
2 |
2(n-1)-2+(n-2)=3(n-2) |
3 |
3(n-2)-3+(n-3)=4(n-3) |
4 |
|
5 |
|
…… |
…… |
(1)根据题意,分别填写上表第4、5两个周期后的细胞总数;
(2)根据上表,直接写出在第x周期后时,该细胞的总个数y(用x、n表示);
(3)当n=21时,细胞在第几周期后时细胞的总个数最多?最多是多少个?
如图,在某建筑物AC上,挂着“魅力湖州”的宣传条幅BC,小明站在点F处,看条幅顶端B,测得仰角为,再往条幅方向前行20米到达点E处,看到条幅顶端B,测得仰角为
,求宣传条幅BC的长(小明的身高不计)。
如图,AB, AC 是⊙O的两条弦,且AB=AC.延长CA到点D.使AD=AC,连结DB并延长,交⊙O于点E.求证:CE是⊙O的直径.
如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连结AF,F为AE上一点,且∠BFE=∠C. 求证:△ABF∽△EAD.