(11·天水)在梯形OABC中,CB∥OA,∠AOC=60°,∠OAB=90°,
OC=2,BC=4,以点O为原点,OA所在的直线为x轴,建立平面直角坐标系,另有一边
长为2的等边△DEF,DE在x轴上(如图(1)),如果让△DEF以每秒1个单位的速度向
左作匀速直线运动,开始时点D与点A重合,当点D到达坐标原点时运动停止.
(1)设△DEF运动时间为t,△DEF与梯形OABC重叠部分的面积为S,求S关于t的函
数关系式.
(2)探究:在△DEF运动过程中,如果射线DF交经过O、C、B三点的抛物线于点G,是
否存在这样的时刻t,使得△OAG的面积与梯形OABC的面积相等?若存在,求出t的值;
若不存在,请说明理由.
刘大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,刘大叔去年甲、乙两种蔬菜各种植了多少亩?
先化简,再求值:,其中x=cos60°.
设抛物线(
)与x轴的交点为A(
, 0),B(
,0),且
,其中
,点P(a,b)为抛物线上一动点.
(1)求抛物线的解析式;
(2)连接AC,过P点做直线PE∥AC交x轴于点E,交y轴于点E(O,t),当a取何值时t有最大值,最大值是多少?
(3)判断在(2)的条件中是否存在一点P,使以点A、C、P、E为顶点的四边形为平行四边形.若不存在试说明理由;若存在,试求出点P的坐标.
在RT△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连接CD.
(1)求证:∠DCB=∠A;
(2)若M为线段BC上一点,试问点M在什么位置时,直线DM与⊙O相切?并说明理由.
如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?