游客
题文

(·辽宁沈阳)如图,在平面直角坐标系中,抛物线与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.
(1)填空:点A的坐标为(    ,      ),点B的坐标为(      ,      ),点C的坐标为(    ,      ),点D的坐标为(      ,     );
(2)点P是线段BC上的动点(点P不与点B、C重合)
①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;
②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;
③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,点 E 在正方形 ABCD AD 上,点 F 是线段 AB 上的动点(不与点 A 重合), DF AC 于点 G GH AD 于点 H AB = 1 DE = 1 3

(1)求 tan ACE

(2)设 AF = x GH = y ,试探究 y x 的函数关系式(写出 x 的取值范围);

(3)当 ADF = ACE 时,判断 EG AC 的位置关系并说明理由.

超市购进某种苹果,如果进价增加2元 / 千克要用300元;如果进价减少2元 / 千克,同样数量的苹果只用200元.

(1)求苹果的进价;

(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元 / 千克,写出购进苹果的支出 y (元 ) 与购进数量 x (千克)之间的函数关系式;

(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完,据统计,销售单价 z (元 / 千克)与一天销售数量 x (千克)的关系为 z = - 1 100 x + 12 .在(2)的条件下,要使超市销售苹果利润 w (元 ) 最大,求一天购进苹果数量.(利润 = 销售收入 - 购进支出)

如图, A B O 上两点,且 AB = OA ,连接 OB 并延长到点 C ,使 BC = OB ,连接 AC

(1)求证: AC O 的切线;

(2)点 D E 分别是 AC OA 的中点, DE 所在直线交 O 于点 F G OA = 4 ,求 GF 的长.

如图,反比例函数的图象与过点 A ( 0 , - 1 ) B ( 4 , 1 ) 的直线交于点 B C

(1)求直线 AB 和反比例函数的解析式;

(2)已知点 D ( - 1 , 0 ) ,直线 CD 与反比例函数图象在第一象限的交点为 E ,直接写出点 E 的坐标,并求 ΔBCE 的面积.

已知关于 x 的一元二次方程 x 2 - ( 2 k + 1 ) x + k 2 + k = 0

(1)求证:无论 k 取何值,方程都有两个不相等的实数根.

(2)如果方程的两个实数根为 x 1 x 2 ,且 k x 1 x 2 都为整数,求 k 所有可能的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号