(11·大连)(本题11分)如图,在平面直角坐标系中,点A、B、C的坐标分别
为(0,2)、(-1,0)、(4,0).P是线段OC上的一动点(点P与点O、C不重合),过点P
的直线x=t与AC相交于点Q.设四边形ABPQ关于直线x=t的对称的图形与△QPC重叠
部分的面积为S.
(1)点B关于直线x=t的对称点B′的坐标为________;
(2)求S与t的函数关系式.
某校为庆祝中国共产党90周年,组织全校1800名学生进行党史知识竞赛.为了解本次知识竞赛成绩的分布情况,从中随机抽取了部分学生的成绩进行统计分析(得分为整数,满分为100分),得到如下统计表:根据统计表提供的信息,回答下列问题:
(1)a=,b=,c=;
(2)上述学生成绩的中位数落在 组范围内;
(3)如果用扇形统计图表示这次抽样成绩,那么成绩在89.5~100.5范围内的扇形的
圆心角为度;
(4)若竞赛成绩80分(含80分)以上的为优秀,请你估计该校本次竞赛成绩优秀的学生
有人.
如图,AC=AD,∠BAC=∠BAD,点E在AB上.
(1)你能找出 对全等的三角形;
(2)请写出一对全等三角形,并证明.
(1)先化简,再求值:x(4-x)+(x+1)(x-1),其中.
(2)解方程::
(本小题满分14分)已知抛物线y=x2+4x+m(m为常数)
经过点(0,4).
(1)求m的值;
(2)将该抛物线先向右、再向下平移得到另一条抛物线.已知平移后的抛物线满足下述两个条件:它的对称轴(设为直线l2)与平移前的抛物线的对称轴(设为直线l1)关于y轴对称;它所对应的函数的最小值为-8.
①试求平移后的抛物线的解析式;
②试问在平移后的抛物线上是否存在点P,使得以3为半径的圆P既与x轴相切,又与直线l2相交?若存在,请求出点P的坐标,并求出直线l2
被圆P所截得的弦AB的长度;若不存在,请说明理由.
(本小题满分14分)如图,在边长为8的正方形ABCD
中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作圆O的切线交边BC于点N.
(1)求证:△ODM∽△MCN;
(2)设DM=x,求OA的长(用含x的代数式表示);
(3)在点O运动的过程中,设△CMN的周长为p,试用含x的代数式表示p,你能发现怎样的结论?