(11·大连)(本题11分)如图,在平面直角坐标系中,点A、B、C的坐标分别
为(0,2)、(-1,0)、(4,0).P是线段OC上的一动点(点P与点O、C不重合),过点P
的直线x=t与AC相交于点Q.设四边形ABPQ关于直线x=t的对称的图形与△QPC重叠
部分的面积为S.
(1)点B关于直线x=t的对称点B′的坐标为________;
(2)求S与t的函数关系式.
设x1、x2是方程x2-6x+a=0的两个根,以x1、x2为腰和底边的等腰三角形只可以画出一个.试求a的取值范围.
已知⊙的半径为1,以
为原点,建立如图所示的直角坐标系.有一个正方形
,顶点
的坐标为(
,0),顶点
在
轴上方,顶点
在⊙
上运动.
(1)当点运动到与点
、
在一条直线上时,
与⊙
相切吗?如果相切,请说明理由,并求出
所在直线对应的函数表达式;如果不相切,也请说明理由;
(2)设点的横坐标为
,正方形
的面积为
,求出
与
的函数关系式,并求出
的最大值和最小值.
已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求A、B、C三点的坐标;
(2)求此抛物线的表达式;
(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.
某果品基地用汽车装运A、B、C三种不同品牌的水果到外地销售,按规定每辆汽车只能装同种水果,且必须装满,其中A、B、C三种水果的重量及利润按下表提供信息:
水果品牌 |
A |
B |
C |
每辆汽车载重量(吨) |
2.2 |
2.1 |
2 |
每吨水果可获利润(百元) |
6 |
8 |
5 |
(1)若用7辆汽车装运A、C两种水果共15吨到甲地销售,如何安排汽车装运A、C两种水果?
(2)计划用20辆汽车装运A、B、C三种不同水果共42吨到乙地销售(每种水果不少于2车),请你设计一种装运方案,可使果品基地获得最大利润,并求出最大利润。
如图,已知AB是⊙O的直径,点C在⊙O上,P是△OAC的重心,且OP=,∠A=30º.
(1)求劣弧的长;
(2)若∠ABD=120º,BD=1,求证:CD是⊙O的切线.