已知函数
,
,其中
.
(I)设函数
.若
在区间
上不单调,求
的取值范围;
(II)设函数
是否存在
,对任意给定的非零实数
,存在惟一的非零实数
(
),使得
成立?若存在,求
的值;若不存在,请说明理由.
如图,在四棱锥
中,底面
为矩形,
底面
,
、
分别是
、
中点.
(1)求证:
平面
;
(2)求证:
.
已知椭圆
:
,直线
交椭圆
于
两点.
(Ⅰ)求椭圆
的焦点坐标及长轴长;
(Ⅱ)求以线段
为直径的圆的方程.
在平面直角坐标系
中,已知点
,动点
在
轴上的正射影为点
,且满足直线
.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)当
时,求直线
的方程.
已知椭圆
上的点
到左右两焦点
的距离之和为
,离心率为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)过右焦点
的直线
交椭圆于
两点.
(1)若
轴上一点
满足
,求直线
斜率
的值;
(2)是否存在这样的直线
,使
的最大值为
(其中
为坐标原点)?若存在,求直线
方程;若不存在,说明理由.
设函数
,若函数
在
处与直线
相切,
(1)求实数
,
的值;
(2)求函数
上的最大值.