.(本小题满分14分)已知等比数列的公比为
,首项为
,其前
项的和为
.数列
的前
项的和为
, 数列
的前
项的和为
(Ⅰ)若,
,求
的通项公式;(Ⅱ)①当
为奇数时,比较
与
的大小; ②当
为偶数时,若
,问是否存在常数
(与n无关),使得等式
恒成立,若存在,求出
的值;若不存在,说明理由
(本小题满分10分)
已知动圆过点
且与直线
相切.
(1)求点的轨迹
的方程;
(2)过点作一条直线交轨迹
于
两点,轨迹
在
两点处的切线相交于点
,
为线段
的中点,求证:
轴.
D.选修4—5:不等式选讲
(本小题满分10分)
求函数的最大值.
C.选修4—4:坐标系与参数方程
(本小题满分10分)
在极坐标系中,圆的方程为
,以极点为坐标原点,极轴为
轴的正半轴建立平面直角坐标系,直线
的参数方程为
(
为参数),判断直线
和圆
的位置关系.
B.选修4—2:矩阵与变换
(本小题满分10分)[
已知矩阵的一个特征值为3,求另一个特征值及其对应的一个特征向量.
【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
(本小题满分10分)
如图,与⊙
相切于点
,
为
的中点,
过点引割线交⊙
于
,
两点,
求证: .