(本小题满分12分)如图,已知正方形ABCD和矩形ACEF所在平面互相垂直,
AB=
,AF=1,M是线段EF的中点。
(Ⅰ)求证:AM∥平面BDE;
(Ⅱ) 求二面角A-DF-B的大小.
(Ⅲ)试问:在线段AC上是否存在一点P,使得直线PF与AD所成角为60°?
已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=
+n-4.
(1)求证{an}为等差数列;
(2)求{an}的通项公式.
设数列{an}的前n项和Sn满足
=3n-2.
(1)求数列{an}的通项公式;
(2)设bn=
,Tn是数列{bn}的前n项和,求使得Tn<
对所有n∈N*都成立的最小正整数m.
已知数列{an}的通项公式为an=n2-n-30.
(1)求数列的前三项,60是此数列的第几项?
(2)n为何值时,an=0,an>0,an<0?
(3)该数列前n项和Sn是否存在最值?说明理由.
设数列{an}的前n项和为Sn.已知a1=a,an+1=Sn+3n,n∈N*.
(1)设bn=Sn-3n,求数列{bn}的通项公式;
(2)若an+1≥an,n∈N*,求a的取值范围.
已知数列{an}满足:a1=1,2n-1an=an-1(n∈N*,n≥2).
(1)求数列{an}的通项公式;
(2)这个数列从第几项开始及以后各项均小于
?