2014年遂宁市将承办四川省运动会。明星队和沱牌队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成如图①、图②的统计图。
⑴在图②中画出表示沱牌队在集训期内这五场比赛的成绩变化情况的折线统计图;
⑵请你分别计算明星队和沱牌队这五场比赛的平均分;
⑶就五场比赛,分别计算两队成绩的极差;
⑷如果从明星与沱牌中选派一支参加省运会,根据上述统计情况,从平均分、折线走势、获胜场数和极差四个方面进行简要分析,请你决策选派哪支球队参加更能取得好的成绩?
已知如图1,Rt△ABC和Rt△ADE的直角边AC和AE重叠在一起,AD=AE,∠B=30°,∠DAE=∠ACB=90°.
(1)如图1,填空:∠BAD= ;= ;
(2)如图2,将△ADE绕点A顺时针旋转,使AE到AB边上,∠ACH=∠BCH,连接BH,求∠CBH的度数;
(3)如图3,点P是BE上一点,过A、E两点分别作AN⊥PC、EM⊥PC,垂足分别为N、M,若EM=2,AN=5,求△AND的面积.
如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E. ⊙O的切线BF与弦AD的延长线相交于点F,且AD=3,cos∠BCD=.
(1)求证:CD∥BF;
(2)求⊙O的半径;
(3)求弦CD的长.
如图,一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?
图1是某城市四月份1至8日的日最高气温随时间变化的折线统计图,小刚根据图1将数据统计整理后制成了图2.
根据图中信息,解答下列问题:
(1)将图2补充完整;
(2)这8天的日最高气温的中位数是 ºC;
(3)计算这8天的日最高气温的平均数.
已知两个连体的正方形(有两条边在同一条直线上)在正方形网格上的位置如图所示,请你把它分割后,拼接成一个新的正方形. (要求:在正方形网格图中用实线画出拼接成的新正方形且新正方形的顶点在网格的格点上,不写作法).