(本小题满分13分)
定长为3的线段AB两端点A、B分别在轴,
轴上滑动,M在线段AB上,且
(1)求点M的轨迹C的方程;
(2)设过且不垂直于坐标轴的动直线
交轨迹C于A、B两点,问:线段
上
是否存在一点D,使得以DA,DB为邻边的平行四边形为菱形?作出判断并证明。
(本小题满分12分)如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.
(I)求证AE⊥平面BCE;
(Ⅱ)求二面角B—AC—E的大小;
(Ⅲ)求点D到平面ACE的距离.
(本小题满分12分)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:
编号 |
1 |
2 |
3 |
4 |
5 |
x |
169 |
178 |
166 |
175 |
180 |
y |
75 |
80 |
77 |
70 |
81 |
已知甲厂生产的产品共有98件.
(I)求乙厂生产的产品数量;
(Ⅱ)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品,用上述样本数据估计乙厂生产的优等品的数量;
(Ⅲ)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及其均值(即数学期望).
(本小题满分12分)在锐角中,角
、
、
的对边分别为
、
、
,且满足
.
(I)求角的大小;
(Ⅱ)设,试
求的取值范围.
(本小题满分10分)选修4-5:不等式选讲
已知的解集为M。
(1)求M;
(2)当时,证明:
(本小题满分10分)选修4-4:坐标系与参数方程
直角坐标系和极坐标系
的原点与极点重合,
轴正半轴与极轴重合,单位长度相同,在直角坐标系下,曲线C的参数方程为
为参数)。
(1)在极坐标系下,曲线C与射线和射线
分别交于A,B两点,求
的面积;
(2)在直角坐标系下,直线的参数方程为
(
为参数),求曲线C与直线
的交点坐标。