举重运动是力量和技巧充分结合的体育项目,就“抓”举而言,其技术动作可分为预备、提杠发力、下蹲支撑、起立、放下杠铃等动作,如图所示表示了其中的几个状态。在“提杠发力”阶段,运动员对杠铃施加恒力作用,使杠铃竖直向上加速运动;“下蹲支撑”阶段,运
动员不再用力,杠铃继续向上运动,当运动员处于“下蹲支撑”处时,杠铃的速度恰好为零。
(1)为了研究方便,可将“提杠发力”、“下蹲支撑”两个动作简化为较为简单的运动过程来处理,请定性画出相应的速度—时间图像。
(2)已知运动员从开始“提杠发力”到“下蹲支撑”处的整个过程历时0.8s,杠铃总共升高0.6m,求杠铃获得的最大速度。
(3)若杠铃的质量为150kg,求运动员提杠发力时对杠铃施加的作用力大小。
如图所示,在光滑绝缘水平面上有直角坐标系xoy,将半径为R=0.4m,内径很小、内壁光滑、管壁极薄的圆弧形绝缘管AB水平固定在第二象限内,它的A端和圆心都在y轴上,B端在x轴上,
与y轴负方向夹角θ=60º。在坐标系的第一、四象限不同区域内存在着四个垂直于水平面的匀强磁场, a、b、c为磁场的理想分界线,它们的直线方程分别为
;在a、b所围的区域Ⅰ和b、c所围的区域Ⅱ内的磁感应强度分别为
、
,第一、四象限其它区域内磁感应强度均为
。当一质量m =1.2×10﹣5
、电荷量q =1.0×10﹣6C,直径略小于绝缘管内径的带正电小球,自绝缘管A端以v =2.0×10﹣2 m/s的速度垂直y轴射入管中,在以后的运动过程中,小球能垂直通过c、a,并又能以垂直于y轴的速度进入绝缘管而做周期性运动。求:
(1)的大小和方向;
(2)、
的大小和方向;
(3)在运动的一个周期内,小球在经过第一、四象限的过程中,在区域Ⅰ、Ⅱ内运动的时间与在区域Ⅰ、Ⅱ外运动的时间之比。
如图所示,有位于竖直平面上的半径为R的圆形光滑绝缘轨道,其上半部分处于竖直向下、场强为E的匀强电场中,下半部分处于水平向里的匀强磁场中。质量为m,电量为q的带正电小球,从轨道的水平直径的M端由静止释放,若小球在某一次通过最低点时对轨道的压力为零,求:
(1)磁感强度B的大小。
(2)小球对轨道最低点的最大压力。
(3)若要小球在圆形轨道内作完整的圆周运动,小球从轨道的水平直径的M端下滑的最小速度。
用同种材料制成倾角为α=37°的斜面和长水平面,斜面长2.5m且固定,斜面与水平面之间有一段很小的弧形连接。一小物块从斜面顶端以初速度v0沿斜面向下滑动,若初始速度v0=2.0m/s,小物块运动2.0s后停止在斜面上。减小初始速度v0,多次进行实验,记录下小物块从开始运动到最终停下的时间t,做出相应的t-v0图像如图所示。(sin37°=0.6,cos37°=0.8,g=10m/s2)
(1)求小物块在斜面上下滑的加速度。
(2)求小物块与该种材料间的动摩擦因数。
(3)某同学认为,若小物块初速度v0=3m/s则根据图像可以推知小物块从开始运动到最终停下的时间为3s。这一说法是否正确?若正确,请给出推导过程;若不正确,请说明理由,并解出正确的结果。
如图,一根粗细均匀、内壁光滑、竖直放置的玻璃管下端密封,上端封闭但留有一抽气孔.管内下部被活塞封住一定量的气体(可视为理想气体),气体温度为T1.开始时,将活塞上方的气体缓慢抽出,当活塞上方的压强达到p0时,活塞下方气体的体积为V1,活塞上方玻璃管的容积为2.6V1。活塞因重力而产生的压强为0.5p0。继续将活塞上方抽成真空并密封.整个抽气过程中管内气体温度始终保持不变.然后将密封的气体缓慢加热.求:
①活塞刚碰到玻璃管顶部时气体的温度;
②当气体温度达到1.8T1时气体的压强.
如图是用导热性能良好的材料制成的气体实验装置,开始时封闭的空气柱长度为20cm,人用竖直向下的力F压活塞,使空气柱长度变为原来的一半,人对活塞做功10J,大气压强为P0=1×105Pa,不计活塞的重力。问:
①若用足够长的时间缓慢压缩,求压缩后气体的压强多大?
②若以适当的速度压缩气体,此过程气体向外散失的热量为2J,则气体的内能增加多少?(活塞的横截面积S=1cm2)