(本小题满分12分)
已知函数在
和
处有极值。
(Ⅰ)求的值;
(Ⅱ)求曲线在
处的切线方程.
(本题满分12分,其中第1小题6分,第2小题6分)
在直三棱柱中,
,
,且异面直线
与
所成的角等于
,设
(1)求的值;
(2)求直线到平面
的距离。
(文)正数列的前
项和
满足:
,
(1)求证:是一个定值;
(2)若数列是一个单调递增数列,求
的取值范围;
(3)若是一个整数,求符合条件的自然数
.
(理)正数列的前
项和
满足:
,
常数
(1)求证:是一个定值;
(2)若数列是一个周期数列,求该数列的周期;
(3)若数列是一个有理数等差数列,求
.
、出租车几何学是由十九世纪的赫尔曼-闵可夫斯基所创立的。在出租车几何学中,点还是形如的有序实数对,直线还是满足
的所有
组成的图形,角度大小的定义也和原来一样。直角坐标系内任意两点
定义它们之间的一种“距离”:
,请解决以下问题:
1、(理)求线段上一点
的距离到原点
的“距离”;
(文)求点、
的“距离”
;
2、(理)定义:“圆”是所有到定点“距离”为定值的点组成的图形,
求“圆周”上的所有点到点的“距离”均为
的“圆”方程;
(文)求线段上一点
的距离到原点
的“距离”;
3、(理)点、
,写出线段
的垂直平分线的轨迹方程并画出大致图像.
(文)定义:“圆”是所有到定点“距离”为定值的点组成的图形,点、
,
,求经过这三个点确定的一个“圆”的方程,并画出大致图像;
(说明所给图形小正方形的单位是1)
(文)函数,
定义的第
阶阶梯函数
,其中
,
的各阶梯函数图像的最高点
,
(1)直接写出不等式的解;
(2)求证:所有的点在某条直线
上.