已知:如图14,⊙A与轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为
,过点C作⊙A的切线交
轴于点B(-4,0)
.
(1)求切线BC的解析式;
(2)若点P是第一象限内⊙A上的一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标.
如图,在中,
,
平分
交
于
,点
在
上,以
为半径的圆,交
于
,交
于
,且点
在⊙
上,连结
,切⊙
于点
求证
若
,求⊙
的半径
若从矩形一边上的点到对边的视角是直角,即称该点是直角点。例如,如图的矩形中,点
在
边上,连接
,
,则点
为直角点。若点
分别为矩形
的边
上的直角点,且
,
,则
的长为
以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B.(1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过1秒后点P运动到点(2,0),此时PQ恰好是
的切线,连接OQ. 求
的大小;
(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q再经过5秒后直线PQ被
截得的弦长.
将一块三角板的直角顶点放在正方形ABCD的对角线交点位置,两边与对角线重合如图甲,将这块三角板绕直角顶点顺时针方向旋转(旋转角小于90°)如图乙.⑴试判断△ODE和△OCF是否全等,并证明你的结论.
⑵若正方形ABCD的对角线长为10,试求三角板和正方形重合部分的面积.
已知是⊙
的直径,
是⊙
的切线,
是切点,
与⊙
交于点
.
(1)如图①,若
,
,求
的长(结果保留根号);
(2)如图②,若
为
的中点,求证:直线
是⊙
的切线.