(本小题满分14分)
三棱柱
中,
侧棱与底面垂直,
,
,
分别是
,
的中点.
(1)求证:平面
;
(2)求证:平面
;
(3)求二面角的余弦值.
已知是数列
的前n项和,
满足关系式
,
(n≥2,n为正整数).
(1)令,证明:数列
是等差数列;
(2)求数列的通项公式;
(3)对于数列,若存在常数M>0,对任意的
,恒有
≤M成立,称数列
为“差绝对和有界数列”,
证明:数列为“差绝对和有界数列”.
设m为实数,函数,
.
(1)若≥4,求m的取值范围;
(2)当m>0时,求证在
上是单调递增函数;
(3)若对于一切
,不等式
≥1恒成立,求实数m的取值范围.
某学校数学兴趣小组有10名学生,其中有4名女同学;英语兴趣小组有5名学生,其中有3名女学生,现采用分层抽样方法(层内采用不放回简单随机抽样)从数学兴趣小组、英语兴趣小组中共抽取3名学生参加科技节活动。
(1)求从数学兴趣小组、英语兴趣小组各抽取的人数;
(2)求从数学兴趣小组抽取的学生中恰有1名女学生的概率;
(3)记表示抽取的3名学生中男学生数,求
的分布列及数学期望。
如图,过椭圆的左焦点
作x轴的垂线交椭圆于点P,点A和点B分别为椭圆的右顶点和上顶点,OP∥AB.
(1)求椭圆的离心率e(2)过右焦点
作一条弦QR,使QR⊥AB.若△
的面积为
,求椭圆的方程.
如图,ABCD是边长为2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=BD
(1)求证:BF∥平面ACE;(2)求二面角B-AF-C的大小;
(3)求点F到平面ACE的距离.